Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Blockchain Transaction Graph based Machine Learning Method for Bitcoin Price Prediction (2008.09667v1)

Published 21 Aug 2020 in q-fin.ST, cs.CE, cs.LG, cs.SI, and stat.ML

Abstract: Bitcoin, as one of the most popular cryptocurrency, is recently attracting much attention of investors. Bitcoin price prediction task is consequently a rising academic topic for providing valuable insights and suggestions. Existing bitcoin prediction works mostly base on trivial feature engineering, that manually designs features or factors from multiple areas, including Bticoin Blockchain information, finance and social media sentiments. The feature engineering not only requires much human effort, but the effectiveness of the intuitively designed features can not be guaranteed. In this paper, we aim to mining the abundant patterns encoded in bitcoin transactions, and propose k-order transaction graph to reveal patterns under different scope. We propose the transaction graph based feature to automatically encode the patterns. A novel prediction method is proposed to accept the features and make price prediction, which can take advantage from particular patterns from different history period. The results of comparison experiments demonstrate that the proposed method outperforms the most recent state-of-art methods.

Citations (6)

Summary

We haven't generated a summary for this paper yet.