Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finding the optimal Nash equilibrium in a discrete Rosenthal congestion game using the Quantum Alternating Operator Ansatz (2008.09505v1)

Published 20 Aug 2020 in quant-ph and cs.GT

Abstract: This paper establishes the tractability of finding the optimal Nash equilibrium, as well as the optimal social solution, to a discrete congestion game using a gate-model quantum computer. The game is of the type originally posited by Rosenthal in the 1970's. To find the optimal Nash equilibrium, we formulate an optimization problem encoding based on potential functions and path selection constraints, and solve it using the Quantum Alternating Operator Ansatz. We compare this formulation to its predecessor, the Quantum Approximate Optimization Algorithm. We implement our solution on an idealized simulator of a gate-model quantum computer, and demonstrate tractability on a small two-player game. This work provides the basis for future endeavors to apply quantum approximate optimization to quantum machine learning problems, such as the efficient training of generative adversarial networks using potential functions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.