Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid quantum-classical algorithms for solving quantum chemistry in Hamiltonian-wavefunction space (2008.09014v1)

Published 20 Aug 2020 in quant-ph

Abstract: Variational quantum eigensolver~(VQE) typically optimizes variational parameters in a quantum circuit to prepare eigenstates for a quantum system. Its applications to many problems may involve a group of Hamiltonians, e.g., Hamiltonian of a molecule is a function of nuclear configurations. In this paper, we incorporate derivatives of Hamiltonian into VQE and develop some hybrid quantum-classical algorithms, which explores both Hamiltonian and wavefunction spaces for optimization. Aiming for solving quantum chemistry problems more efficiently, we first propose mutual gradient descent algorithm for geometry optimization by updating parameters of Hamiltonian and wavefunction alternatively, which shows a rapid convergence towards equilibrium structures of molecules. We then establish differential equations that governs how optimized variational parameters of wavefunction change with intrinsic parameters of the Hamiltonian, which can speed up calculation of energy potential surface. Our studies suggest a direction of hybrid quantum-classical algorithm for solving quantum systems more efficiently by considering spaces of both Hamiltonian and wavefunction.

Summary

We haven't generated a summary for this paper yet.