Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Controllable Backlight Dimming (2008.08352v1)

Published 19 Aug 2020 in eess.IV and cs.LG

Abstract: Dual-panel displays require local dimming algorithms in order to reproduce content with high fidelity and high dynamic range. In this work, a novel deep learning based local dimming method is proposed for rendering HDR images on dual-panel HDR displays. The method uses a Convolutional Neural Network to predict backlight values, using as input the HDR image that is to be displayed. The model is designed and trained via a controllable power parameter that allows a user to trade off between power and quality. The proposed method is evaluated against six other methods on a test set of 105 HDR images, using a variety of quantitative quality metrics. Results demonstrate improved display quality and better power consumption when using the proposed method compared to the best alternatives.

Summary

We haven't generated a summary for this paper yet.