Papers
Topics
Authors
Recent
Search
2000 character limit reached

$Z$-knotted and $Z$-homogeneous triangulations of surfaces

Published 18 Aug 2020 in math.CO | (2008.08126v1)

Abstract: A triangulation is called $z$-knotted if it has a single zigzag (up to reversing). A $z$-orientation on a triangulation is a minimal collection of zigzags which double covers the set of edges. An edge is of type I if zigzags from the $z$-orientation pass through it in different directions, otherwise this edge is of type II. If all zigzags from the $z$-orientation contain precisely two edges of type I after any edge of type II, then the $z$-oriented triangulation is said to be $z$-homogeneous. We describe an algorithm transferring each $z$-homogeneous trianguation to other $z$-homogeneous triangulation which is also $z$-knotted.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.