Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AB3DMOT: A Baseline for 3D Multi-Object Tracking and New Evaluation Metrics (2008.08063v1)

Published 18 Aug 2020 in cs.CV, cs.MA, and cs.RO

Abstract: 3D multi-object tracking (MOT) is essential to applications such as autonomous driving. Recent work focuses on developing accurate systems giving less attention to computational cost and system complexity. In contrast, this work proposes a simple real-time 3D MOT system with strong performance. Our system first obtains 3D detections from a LiDAR point cloud. Then, a straightforward combination of a 3D Kalman filter and the Hungarian algorithm is used for state estimation and data association. Additionally, 3D MOT datasets such as KITTI evaluate MOT methods in 2D space and standardized 3D MOT evaluation tools are missing for a fair comparison of 3D MOT methods. We propose a new 3D MOT evaluation tool along with three new metrics to comprehensively evaluate 3D MOT methods. We show that, our proposed method achieves strong 3D MOT performance on KITTI and runs at a rate of $207.4$ FPS on the KITTI dataset, achieving the fastest speed among modern 3D MOT systems. Our code is publicly available at http://www.xinshuoweng.com/projects/AB3DMOT.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Xinshuo Weng (42 papers)
  2. Jianren Wang (23 papers)
  3. David Held (81 papers)
  4. Kris Kitani (96 papers)
Citations (81)

Summary

We haven't generated a summary for this paper yet.