Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchical HMM for Eye Movement Classification (2008.07961v1)

Published 18 Aug 2020 in cs.CV

Abstract: In this work, we tackle the problem of ternary eye movement classification, which aims to separate fixations, saccades and smooth pursuits from the raw eye positional data. The efficient classification of these different types of eye movements helps to better analyze and utilize the eye tracking data. Different from the existing methods that detect eye movement by several pre-defined threshold values, we propose a hierarchical Hidden Markov Model (HMM) statistical algorithm for detecting fixations, saccades and smooth pursuits. The proposed algorithm leverages different features from the recorded raw eye tracking data with a hierarchical classification strategy, separating one type of eye movement each time. Experimental results demonstrate the effectiveness and robustness of the proposed method by achieving competitive or better performance compared to the state-of-the-art methods.

Citations (6)

Summary

We haven't generated a summary for this paper yet.