Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the $L^p$ boundedness of the Wave Operators for fourth order Schrödinger operators (2008.07576v2)

Published 17 Aug 2020 in math.AP

Abstract: We consider the fourth order Schr\"odinger operator $H=\Delta2+V(x)$ in three dimensions with real-valued potential $V$. Let $H_0=\Delta2$, if $V$ decays sufficiently and there are no eigenvalues or resonances in the absolutely continuous spectrum of $H$ then the wave operators $W_{\pm}= s\,-\,\lim_{t\to \pm \infty} e{itH}e{-itH_0}$ extend to bounded operators on $Lp(\mathbb R3)$ for all $1<p<\infty$.

Summary

We haven't generated a summary for this paper yet.