Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integrating Deep Reinforcement Learning Networks with Health System Simulations (2008.07434v1)

Published 21 Jul 2020 in cs.LG and cs.AI

Abstract: Background and motivation: Combining Deep Reinforcement Learning (Deep RL) and Health Systems Simulations has significant potential, for both research into improving Deep RL performance and safety, and in operational practice. While individual toolkits exist for Deep RL and Health Systems Simulations, no framework to integrate the two has been established. Aim: Provide a framework for integrating Deep RL Networks with Health System Simulations, and to ensure this framework is compatible with Deep RL agents that have been developed and tested using OpenAI Gym. Methods: We developed our framework based on the OpenAI Gym framework, and demonstrate its use on a simple hospital bed capacity model. We built the Deep RL agents using PyTorch, and the Hospital Simulatation using SimPy. Results: We demonstrate example models using a Double Deep Q Network or a Duelling Double Deep Q Network as the Deep RL agent. Conclusion: SimPy may be used to create Health System Simulations that are compatible with agents developed and tested on OpenAI Gym environments. GitHub repository of code: https://github.com/MichaelAllen1966/learninghospital

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Michael Allen (9 papers)
  2. Thomas Monks (3 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com