Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
101 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
38 tokens/sec
GPT-5 High Premium
24 tokens/sec
GPT-4o
101 tokens/sec
DeepSeek R1 via Azure Premium
90 tokens/sec
GPT OSS 120B via Groq Premium
518 tokens/sec
Kimi K2 via Groq Premium
188 tokens/sec
2000 character limit reached

An Architectural Design for Measurement Uncertainty Evaluation in Cyber-Physical Systems (2008.07282v1)

Published 17 Aug 2020 in eess.SP and cs.MA

Abstract: Several use cases from the areas of manufacturing and process industry, require highly accurate sensor data. As sensors always have some degree of uncertainty, methods are needed to increase their reliability. The common approach is to regularly calibrate the devices to enable traceability according to national standards and Syst`eme international (SI) units - which follows costly processes. However, sensor networks can also be represented as Cyber Physical Systems (CPS) and a single sensor can have a digital representation (Digital Twin) to use its data further on. To propagate uncertainty in a reliable way in the network, we present a system architecture to communicate measurement uncertainties in sensor networks utilizing the concept of Asset Administration Shells alongside methods from the domain of Organic Computing. The presented approach contains methods for uncertainty propagation as well as concepts from the Machine Learning domain that combine the need for an accurate uncertainty estimation. The mathematical description of the metrological uncertainty of fused or propagated values can be seen as a first step towards the development of a harmonized approach for uncertainty in distributed CPSs in the context of Industrie 4.0. In this paper, we present basic use cases, conceptual ideas and an agenda of how to proceed further on.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.