Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

White blood cell classification (2008.07181v2)

Published 17 Aug 2020 in cs.CV

Abstract: This paper proposes a novel automatic classification framework for the recognition of five types of white blood cells. Segmenting complete white blood cells from blood smears images and extracting advantageous features from them remain challenging tasks in the classification of white blood cells. Therefore, we present an adaptive threshold segmentation method to deal with blood smears images with non-uniform color and uneven illumination, which is designed based on color space information and threshold segmentation. Subsequently, after successfully separating the white blood cell from the blood smear image, a large number of nonlinear features including geometrical, color and texture features are extracted. Nevertheless, redundant features can affect the classification speed and efficiency, and in view of that, a feature selection algorithm based on classification and regression trees (CART) is designed. Through in-depth analysis of the nonlinear relationship between features, the irrelevant and redundant features are successfully removed from the initial nonlinear features. Afterwards, the selected prominent features are fed into particle swarm optimization support vector machine (PSO-SVM) classifier to recognize the types of the white blood cells. Finally, to evaluate the performance of the proposed white blood cell classification methodology, we build a white blood cell data set containing 500 blood smear images for experiments. By comparing with the ground truth obtained manually, the proposed segmentation method achieves an average of 95.98% and 97.57% dice similarity for segmented nucleus and cell regions respectively. Furthermore, the proposed methodology achieves 99.76% classification accuracy, which well demonstrates its effectiveness.

Citations (4)

Summary

We haven't generated a summary for this paper yet.