Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AutoPose: Searching Multi-Scale Branch Aggregation for Pose Estimation (2008.07018v1)

Published 16 Aug 2020 in cs.CV

Abstract: We present AutoPose, a novel neural architecture search(NAS) framework that is capable of automatically discovering multiple parallel branches of cross-scale connections towards accurate and high-resolution 2D human pose estimation. Recently, high-performance hand-crafted convolutional networks for pose estimation show growing demands on multi-scale fusion and high-resolution representations. However, current NAS works exhibit limited flexibility on scale searching, they dominantly adopt simplified search spaces of single-branch architectures. Such simplification limits the fusion of information at different scales and fails to maintain high-resolution representations. The presentedAutoPose framework is able to search for multi-branch scales and network depth, in addition to the cell-level microstructure. Motivated by the search space, a novel bi-level optimization method is presented, where the network-level architecture is searched via reinforcement learning, and the cell-level search is conducted by the gradient-based method. Within 2.5 GPU days, AutoPose is able to find very competitive architectures on the MS COCO dataset, that are also transferable to the MPII dataset. Our code is available at https://github.com/VITA-Group/AutoPose.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com