Papers
Topics
Authors
Recent
2000 character limit reached

Generalized Ricci Flow

Published 16 Aug 2020 in math.DG, math.AP, and math.CV | (2008.07004v2)

Abstract: This book gives an introduction to fundamental aspects of generalized Riemannian, complex, and K\"ahler geometry. This leads to an extension of the classical Einstein-Hilbert action, which yields natural extensions of Einstein and Calabi-Yau structures as `canonical metrics' in generalized Riemannian and complex geometry. The generalized Ricci flow is introduced as a tool for constructing such metrics, and extensions of the fundamental Hamilton/Perelman regularity theory of Ricci flow are proved. These results are refined in the setting of generalized complex geometry, where the generalized Ricci flow is shown to preserve various integrability conditions, taking the form of pluriclosed flow and generalized K\"ahler-Ricci flow. This leads to global convergence results, and applications to complex geometry. A purely mathematical introduction to the physical idea of T-duality is given, and a discussion of its relationship to generalized Ricci flow.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.