Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New jump operators on equivalence relations (2008.06613v5)

Published 15 Aug 2020 in math.LO

Abstract: We introduce a new family of jump operators on Borel equivalence relations; specifically, for each countable group $\Gamma$ we introduce the $\Gamma$-jump. We study the elementary properties of the $\Gamma$-jumps and compare them with other previously studied jump operators. One of our main results is to establish that for many groups $\Gamma$, the $\Gamma$-jump is \emph{proper} in the sense that for any Borel equivalence relation $E$ the $\Gamma$-jump of $E$ is strictly higher than $E$ in the Borel reducibility hierarchy. On the other hand there are examples of groups $\Gamma$ for which the $\Gamma$-jump is not proper. To establish properness, we produce an analysis of Borel equivalence relations induced by continuous actions of the automorphism group of what we denote the full $\Gamma$-tree, and relate these to iterates of the $\Gamma$-jump. We also produce several new examples of equivalence relations that arise from applying the $\Gamma$-jump to classically studied equivalence relations and derive generic ergodicity results related to these. We apply our results to show that the complexity of the isomorphism problem for countable scattered linear orders properly increases with the rank.

Summary

We haven't generated a summary for this paper yet.