Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AntiDote: Attention-based Dynamic Optimization for Neural Network Runtime Efficiency (2008.06543v1)

Published 14 Aug 2020 in cs.CV, cs.LG, and eess.IV

Abstract: Convolutional Neural Networks (CNNs) achieved great cognitive performance at the expense of considerable computation load. To relieve the computation load, many optimization works are developed to reduce the model redundancy by identifying and removing insignificant model components, such as weight sparsity and filter pruning. However, these works only evaluate model components' static significance with internal parameter information, ignoring their dynamic interaction with external inputs. With per-input feature activation, the model component significance can dynamically change, and thus the static methods can only achieve sub-optimal results. Therefore, we propose a dynamic CNN optimization framework in this work. Based on the neural network attention mechanism, we propose a comprehensive dynamic optimization framework including (1) testing-phase channel and column feature map pruning, as well as (2) training-phase optimization by targeted dropout. Such a dynamic optimization framework has several benefits: (1) First, it can accurately identify and aggressively remove per-input feature redundancy with considering the model-input interaction; (2) Meanwhile, it can maximally remove the feature map redundancy in various dimensions thanks to the multi-dimension flexibility; (3) The training-testing co-optimization favors the dynamic pruning and helps maintain the model accuracy even with very high feature pruning ratio. Extensive experiments show that our method could bring 37.4% to 54.5% FLOPs reduction with negligible accuracy drop on various of test networks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Fuxun Yu (39 papers)
  2. Chenchen Liu (24 papers)
  3. Di Wang (408 papers)
  4. Yanzhi Wang (197 papers)
  5. Xiang Chen (346 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.