Regularity of Morse geodesics and growth of stable subgroups
Abstract: We prove that Morse local-to-global groups grow exponentially faster than their infinite index stable subgroups. This generalizes a result of Dahmani, Futer, and Wise in the context of quasi-convex subgroups of hyperbolic groups to a broad class of groups that contains the mapping class group, CAT(0) groups, and the fundamental groups of closed 3-manifolds. To accomplish this, we develop a theory of automatic structures on Morse geodesics in Morse local-to-global groups. Other applications of these automatic structures include a description of stable subgroups in terms of regular languages, rationality of the growth of stable subgroups, density in the Morse boundary of the attracting fixed points of Morse elements, and containment of the Morse boundary inside the limit set of any infinite normal subgroup.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.