Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Error analysis for probabilities of rare events with approximate models (2008.06368v3)

Published 14 Aug 2020 in math.NA, cs.NA, and stat.CO

Abstract: The estimation of the probability of rare events is an important task in reliability and risk assessment. We consider failure events that are expressed in terms of a limit-state function, which depends on the solution of a partial differential equation (PDE). In many applications, the PDE cannot be solved analytically. We can only evaluate an approximation of the exact PDE solution. Therefore, the probability of rare events is estimated with respect to an approximation of the limit-state function. This leads to an approximation error in the estimate of the probability of rare events. Indeed, we prove an error bound for the approximation error of the probability of failure, which behaves like the discretization accuracy of the PDE multiplied by an approximation of the probability of failure, the first order reliability method (FORM) estimate. This bound requires convexity of the failure domain. For non-convex failure domains, we prove an error bound for the relative error of the FORM estimate. Hence, we derive a relationship between the required accuracy of the probability of rare events estimate and the PDE discretization level. This relationship can be used to guide practicable reliability analyses and, for instance, multilevel methods.

Citations (4)

Summary

We haven't generated a summary for this paper yet.