Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised vs. transfer learning for multimodal one-shot matching of speech and images (2008.06258v1)

Published 14 Aug 2020 in cs.CL, cs.CV, cs.SD, and eess.AS

Abstract: We consider the task of multimodal one-shot speech-image matching. An agent is shown a picture along with a spoken word describing the object in the picture, e.g. cookie, broccoli and ice-cream. After observing one paired speech-image example per class, it is shown a new set of unseen pictures, and asked to pick the "ice-cream". Previous work attempted to tackle this problem using transfer learning: supervised models are trained on labelled background data not containing any of the one-shot classes. Here we compare transfer learning to unsupervised models trained on unlabelled in-domain data. On a dataset of paired isolated spoken and visual digits, we specifically compare unsupervised autoencoder-like models to supervised classifier and Siamese neural networks. In both unimodal and multimodal few-shot matching experiments, we find that transfer learning outperforms unsupervised training. We also present experiments towards combining the two methodologies, but find that transfer learning still performs best (despite idealised experiments showing the benefits of unsupervised learning).

Citations (9)

Summary

We haven't generated a summary for this paper yet.