Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Kullback-Leibler divergence between quantum distributions, and its upper-bound (2008.05932v3)

Published 13 Aug 2020 in cs.LG, cs.IT, math.IT, and quant-ph

Abstract: This work presents an upper-bound to value that the Kullback-Leibler (KL) divergence can reach for a class of probability distributions called quantum distributions (QD). The aim is to find a distribution $U$ which maximizes the KL divergence from a given distribution $P$ under the assumption that $P$ and $U$ have been generated by distributing a given discrete quantity, a quantum. Quantum distributions naturally represent a wide range of probability distributions that are used in practical applications. Moreover, such a class of distributions can be obtained as an approximation of any probability distribution. The retrieving of an upper-bound for the entropic divergence is here shown to be possible under the condition that the compared distributions are quantum distributions over the same quantum value, thus they become comparable. Thus, entropic divergence acquires a more powerful meaning when it is applied to comparable distributions. This aspect should be taken into account in future developments of divergences. The theoretical findings are used for proposing a notion of normalized KL divergence that is empirically shown to behave differently from already known measures.

Summary

We haven't generated a summary for this paper yet.