Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predictive and Causal Implications of using Shapley Value for Model Interpretation (2008.05052v1)

Published 12 Aug 2020 in cs.LG, math.ST, stat.ML, and stat.TH

Abstract: Shapley value is a concept from game theory. Recently, it has been used for explaining complex models produced by machine learning techniques. Although the mathematical definition of Shapley value is straight-forward, the implication of using it as a model interpretation tool is yet to be described. In the current paper, we analyzed Shapley value in the Bayesian network framework. We established the relationship between Shapley value and conditional independence, a key concept in both predictive and causal modeling. Our results indicate that, eliminating a variable with high Shapley value from a model do not necessarily impair predictive performance, whereas eliminating a variable with low Shapley value from a model could impair performance. Therefore, using Shapley value for feature selection do not result in the most parsimonious and predictively optimal model in the general case. More importantly, Shapley value of a variable do not reflect their causal relationship with the target of interest.

Citations (32)

Summary

We haven't generated a summary for this paper yet.