Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Channel Estimation via Direct Calculation and Deep Learning for RIS-Aided mmWave Systems (2008.04704v2)

Published 2 Aug 2020 in cs.IT, eess.SP, and math.IT

Abstract: This paper proposes a novel reconfigurable intelligent surface (RIS) architecture which enables channel estimation of RIS-assisted millimeter wave (mmWave) systems. More specifically, two channel estimation methods, namely, direct calculation (DC) and deep learning (DL) methods, are proposed to skillfully convert the overall channel estimation into two tasks: the channel estimation and the angle parameter estimation of a small number of active elements. In particular, the direct calculation method calculates the angle parameters directly through the channel estimates of adjacent active elements and, based on it, the DL method reduces the angle offset rate and further improves the accuracy of angle parameter estimation. Compared with the traditional methods, the proposed schemes reduce the complexity of the RIS channel estimation while outperforming the beam training method in terms of minimum square error, achievable rate, and outage probability.

Citations (6)

Summary

We haven't generated a summary for this paper yet.