Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Neural Generative Model for Joint Learning Topics and Topic-Specific Word Embeddings (2008.04702v1)

Published 11 Aug 2020 in cs.CL

Abstract: We propose a novel generative model to explore both local and global context for joint learning topics and topic-specific word embeddings. In particular, we assume that global latent topics are shared across documents, a word is generated by a hidden semantic vector encoding its contextual semantic meaning, and its context words are generated conditional on both the hidden semantic vector and global latent topics. Topics are trained jointly with the word embeddings. The trained model maps words to topic-dependent embeddings, which naturally addresses the issue of word polysemy. Experimental results show that the proposed model outperforms the word-level embedding methods in both word similarity evaluation and word sense disambiguation. Furthermore, the model also extracts more coherent topics compared with existing neural topic models or other models for joint learning of topics and word embeddings. Finally, the model can be easily integrated with existing deep contextualized word embedding learning methods to further improve the performance of downstream tasks such as sentiment classification.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Lixing Zhu (63 papers)
  2. Yulan He (113 papers)
  3. Deyu Zhou (42 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.