2000 character limit reached
Realizing ultragraph Leavitt path algebras as Steinberg algebras (2008.04668v1)
Published 11 Aug 2020 in math.RA and math.OA
Abstract: In this article, we realize ultragraph Leavitt path algebras as Steinberg algebras. This realization allows us to use the groupoid approach to obtain structural results about these algebras. Using skew product groupoid, we show that ultragraph Leavitt path algebras are graded von Neumann regular rings. We characterize strongly graded ultragraph Leavitt path algebras and show that every ultragraph Leavitt path algebra is semiprimitive. Moreover, we characterize irreducible representations of ultragraph Leavitt path algebras. We also show that ultragraph Leavitt path algebras can be realized as Cuntz-Pimsner rings.