Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two-stage building energy consumption clustering based on temporal and peak demand patterns (2008.04293v2)

Published 10 Aug 2020 in eess.SP and cs.LG

Abstract: Analyzing smart meter data to understand energy consumption patterns helps utilities and energy providers perform customized demand response operations. Existing energy consumption segmentation techniques use assumptions that could result in reduced quality of clusters in representing their members. We address this limitation by introducing a two-stage clustering method that more accurately captures load shape temporal patterns and peak demands. In the first stage, load shapes are clustered by allowing a large number of clusters to accurately capture variations in energy use patterns and cluster centroids are extracted by accounting for shape misalignments. In the second stage, clusters of similar centroid and power magnitude range are merged by using Dynamic Time Warping. We used three datasets consisting of ~250 households (~15000 profiles) to demonstrate the performance improvement, compared to baseline methods, and discuss the impact on energy management.

Summary

We haven't generated a summary for this paper yet.