Approximate Optimal Control for Safety-Critical Systems with Control Barrier Functions
Abstract: Control Barrier Functions (CBFs) have become a popular tool for enforcing set invariance in safety-critical control systems. While guaranteeing safety, most CBF approaches are myopic in the sense that they solve an optimization problem at each time step rather than over a long time horizon. This approach may allow a system to get too close to the unsafe set where the optimization problem can become infeasible. Some of these issues can be mitigated by introducing relaxation variables into the optimization problem; however, this compromises convergence to the desired equilibrium point. To address these challenges, we develop an approximate optimal approach to the safety-critical control problem in which the cost of violating safety constraints is directly embedded within the value function. We show that our method is capable of guaranteeing both safety and convergence to a desired equilibrium. Finally, we compare the performance of our method with that of the traditional quadratic programming approach through numerical examples.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.