Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Crowd, Lending, Machine, and Bias (2008.04068v1)

Published 20 Jul 2020 in q-fin.GN, cs.AI, cs.CY, cs.LG, and stat.ML

Abstract: Big data and ML algorithms are key drivers of many fintech innovations. While it may be obvious that replacing humans with machine would increase efficiency, it is not clear whether and where machines can make better decisions than humans. We answer this question in the context of crowd lending, where decisions are traditionally made by a crowd of investors. Using data from Prosper.com, we show that a reasonably sophisticated ML algorithm predicts listing default probability more accurately than crowd investors. The dominance of the machine over the crowd is more pronounced for highly risky listings. We then use the machine to make investment decisions, and find that the machine benefits not only the lenders but also the borrowers. When machine prediction is used to select loans, it leads to a higher rate of return for investors and more funding opportunities for borrowers with few alternative funding options. We also find suggestive evidence that the machine is biased in gender and race even when it does not use gender and race information as input. We propose a general and effective "debasing" method that can be applied to any prediction focused ML applications, and demonstrate its use in our context. We show that the debiased ML algorithm, which suffers from lower prediction accuracy, still leads to better investment decisions compared with the crowd. These results indicate that ML can help crowd lending platforms better fulfill the promise of providing access to financial resources to otherwise underserved individuals and ensure fairness in the allocation of these resources.

Citations (64)

Summary

We haven't generated a summary for this paper yet.