Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Circular Law for Random Block Band Matrices with Genuinely Sublinear Bandwidth (2008.03850v2)

Published 10 Aug 2020 in math.PR, math-ph, and math.MP

Abstract: We prove the circular law for a class of non-Hermitian random block band matrices with genuinely sublinear bandwidth. Namely, we show there exists $\tau \in (0,1)$ so that if the bandwidth of the matrix $X$ is at least $n{1-\tau}$ and the nonzero entries are iid random variables with mean zero and slightly more than four finite moments, then the limiting empirical eigenvalue distribution of $X$, when properly normalized, converges in probability to the uniform distribution on the unit disk in the complex plane. The key technical result is a least singular value bound for shifted random band block matrices with genuinely sublinear bandwidth, which improves on a result of Cook in the band matrix setting.

Summary

We haven't generated a summary for this paper yet.