Papers
Topics
Authors
Recent
Search
2000 character limit reached

Speaker discrimination in humans and machines: Effects of speaking style variability

Published 8 Aug 2020 in eess.AS, cs.LG, and eess.SP | (2008.03617v1)

Abstract: Does speaking style variation affect humans' ability to distinguish individuals from their voices? How do humans compare with automatic systems designed to discriminate between voices? In this paper, we attempt to answer these questions by comparing human and machine speaker discrimination performance for read speech versus casual conversations. Thirty listeners were asked to perform a same versus different speaker task. Their performance was compared to a state-of-the-art x-vector/PLDA-based automatic speaker verification system. Results showed that both humans and machines performed better with style-matched stimuli, and human performance was better when listeners were native speakers of American English. Native listeners performed better than machines in the style-matched conditions (EERs of 6.96% versus 14.35% for read speech, and 15.12% versus 19.87%, for conversations), but for style-mismatched conditions, there was no significant difference between native listeners and machines. In all conditions, fusing human responses with machine results showed improvements compared to each alone, suggesting that humans and machines have different approaches to speaker discrimination tasks. Differences in the approaches were further confirmed by examining results for individual speakers which showed that the perception of distinct and confused speakers differed between human listeners and machines.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.