Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum algorithmic randomness (2008.03584v2)

Published 8 Aug 2020 in quant-ph, cs.IT, cs.LO, and math.IT

Abstract: Quantum Martin-L\"of randomness (q-MLR) for infinite qubit sequences was introduced by Nies and Scholz. We define a notion of quantum Solovay randomness which is equivalent to q-MLR. The proof of this goes through a purely linear algebraic result about approximating density matrices by subspaces. We then show that random states form a convex set. Martin-L\"of absolute continuity is shown to be a special case of q-MLR. Quantum Schnorr randomness is introduced. A quantum analogue of the law of large numbers is shown to hold for quantum Schnorr random states.

Citations (1)

Summary

We haven't generated a summary for this paper yet.