Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Concentration of measure bounds for matrix-variate data with missing values (2008.03244v3)

Published 7 Aug 2020 in math.ST and stat.TH

Abstract: We consider the following data perturbation model, where the covariates incur multiplicative errors. For two $n \times m$ random matrices $U, X$, we denote by $U \circ X$ the Hadamard or Schur product, which is defined as $(U \circ X){ij} = (U{ij}) \cdot (X_{ij})$. In this paper, we study the subgaussian matrix variate model, where we observe the matrix variate data $X$ through a random mask $U$: $$ {\mathcal X} = U \circ X \; \; \; \text{ where} \; \; \;X = B{1/2} {\mathbb{Z}} A{1/2}, $$ where ${\mathbb{Z}}$ is a random matrix with independent subgaussian entries, and $U$ is a mask matrix with either zero or positive entries, where ${\mathbb E} U_{ij} \in [0, 1]$ and all entries are mutually independent. Subsampling in rows, or columns, or random sampling of entries of $X$ are special cases of this model. Under the assumption of independence between $U$ and $X$, we introduce componentwise unbiased estimators for estimating covariance $A$ and $B$, and prove the concentration of measure bounds in the sense of guaranteeing the restricted eigenvalue($\textsf{RE}$) conditions to hold on the unbiased estimator for $B$, when columns of data matrix $X$ are sampled with different rates. We further develop multiple regression methods for estimating the inverse of $B$ and show statistical rate of convergence. Our results provide insight for sparse recovery for relationships among entities (samples, locations, items) when features (variables, time points, user ratings) are present in the observed data matrix ${\mathcal X}$ with heterogeneous rates. Our proof techniques can certainly be extended to other scenarios. We provide simulation evidence illuminating the theoretical predictions.

Summary

We haven't generated a summary for this paper yet.