Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Autonomous Six-Degree-of-Freedom Spacecraft Docking Maneuvers via Reinforcement Learning (2008.03215v1)

Published 7 Aug 2020 in eess.SY and cs.SY

Abstract: A policy for six-degree-of-freedom docking maneuvers is developed through reinforcement learning and implemented as a feedback control law. Reinforcement learning provides a potential framework for robust, autonomous maneuvers in uncertain environments with low on-board computational cost. Specifically, proximal policy optimization is used to produce a docking policy that is valid over a portion of the six-degree-of-freedom state-space while striving to minimize performance and control costs. Experiments using the simulated Apollo transposition and docking maneuver exhibit the policy's capabilities and provide a comparison with standard optimal control techniques. Furthermore, specific challenges and work-arounds, as well as a discussion on the benefits and disadvantages of reinforcement learning for docking policies, are discussed to facilitate future research. As such, this work will serve as a foundation for further investigation of learning-based control laws for spacecraft proximity operations in uncertain environments.

Citations (7)

Summary

We haven't generated a summary for this paper yet.