Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MCMC Algorithms for Posteriors on Matrix Spaces (2008.02906v3)

Published 7 Aug 2020 in stat.CO and stat.ME

Abstract: We study Markov chain Monte Carlo (MCMC) algorithms for target distributions defined on matrix spaces. Such an important sampling problem has yet to be analytically explored. We carry out a major step in covering this gap by developing the proper theoretical framework that allows for the identification of ergodicity properties of typical MCMC algorithms, relevant in such a context. Beyond the standard Random-Walk Metropolis (RWM) and preconditioned Crank--Nicolson (pCN), a contribution of this paper in the development of a novel algorithm, termed the `Mixed' pCN (MpCN). RWM and pCN are shown not to be geometrically ergodic for an important class of matrix distributions with heavy tails. In contrast, MpCN is robust across targets with different tail behaviour and has very good empirical performance within the class of heavy-tailed distributions. Geometric ergodicity for MpCN is not fully proven in this work, as some remaining drift conditions are quite challenging to obtain owing to the complexity of the state space. We do, however, make a lot of progress towards a proof, and show in detail the last steps left for future work. We illustrate the computational performance of the various algorithms through numerical applications, including calibration on real data of a challenging model arising in financial statistics.

Summary

We haven't generated a summary for this paper yet.