Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Taylor expansion of $λ$-terms and the groupoid structure of their rigid approximants (2008.02665v4)

Published 6 Aug 2020 in cs.LO

Abstract: We show that the normal form of the Taylor expansion of a $\lambda$-term is isomorphic to its B\"ohm tree, improving Ehrhard and Regnier's original proof along three independent directions. First, we simplify the final step of the proof by following the left reduction strategy directly in the resource calculus, avoiding to introduce an abstract machine ad hoc. We also introduce a groupoid of permutations of copies of arguments in a rigid variant of the resource calculus, and relate the coefficients of Taylor expansion with this structure, while Ehrhard and Regnier worked with groups of permutations of occurrences of variables. Finally, we extend all the results to a nondeterministic setting: by contrast with previous attempts, we show that the uniformity property that was crucial in Ehrhard and Regnier's approach can be preserved in this setting.

Citations (6)

Summary

We haven't generated a summary for this paper yet.