Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning Fairness in Justice Systems: Base Rates, False Positives, and False Negatives (2008.02214v1)

Published 5 Aug 2020 in cs.CY and cs.AI

Abstract: Machine learning best practice statements have proliferated, but there is a lack of consensus on what the standards should be. For fairness standards in particular, there is little guidance on how fairness might be achieved in practice. Specifically, fairness in errors (both false negatives and false positives) can pose a problem of how to set weights, how to make unavoidable tradeoffs, and how to judge models that present different kinds of errors across racial groups. This paper considers the consequences of having higher rates of false positives for one racial group and higher rates of false negatives for another racial group. The paper examines how different errors in justice settings can present problems for machine learning applications, the limits of computation for resolving tradeoffs, and how solutions might have to be crafted through courageous conversations with leadership, line workers, stakeholders, and impacted communities.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Jesse Russell (2 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.