Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised seismic facies classification using deep convolutional autoencoder (2008.01995v1)

Published 5 Aug 2020 in physics.geo-ph, cs.CV, cs.LG, and eess.IV

Abstract: With the increased size and complexity of seismic surveys, manual labeling of seismic facies has become a significant challenge. Application of automatic methods for seismic facies interpretation could significantly reduce the manual labor and subjectivity of a particular interpreter present in conventional methods. A recently emerged group of methods is based on deep neural networks. These approaches are data-driven and require large labeled datasets for network training. We apply a deep convolutional autoencoder for unsupervised seismic facies classification, which does not require manually labeled examples. The facies maps are generated by clustering the deep-feature vectors obtained from the input data. Our method yields accurate results on real data and provides them instantaneously. The proposed approach opens up possibilities to analyze geological patterns in real time without human intervention.

Citations (19)

Summary

We haven't generated a summary for this paper yet.