Papers
Topics
Authors
Recent
Search
2000 character limit reached

Recoverability for optimized quantum $f$-divergences

Published 4 Aug 2020 in quant-ph, cs.IT, hep-th, math-ph, math.IT, and math.MP | (2008.01668v2)

Abstract: The optimized quantum $f$-divergences form a family of distinguishability measures that includes the quantum relative entropy and the sandwiched R\'enyi relative quasi-entropy as special cases. In this paper, we establish physically meaningful refinements of the data-processing inequality for the optimized $f$-divergence. In particular, the refinements state that the absolute difference between the optimized $f$-divergence and its channel-processed version is an upper bound on how well one can recover a quantum state acted upon by a quantum channel, whenever the recovery channel is taken to be a rotated Petz recovery channel. Not only do these results lead to physically meaningful refinements of the data-processing inequality for the sandwiched R\'enyi relative entropy, but they also have implications for perfect reversibility (i.e., quantum sufficiency) of the optimized $f$-divergences. Along the way, we improve upon previous physically meaningful refinements of the data-processing inequality for the standard $f$-divergence, as established in recent work of Carlen and Vershynina [arXiv:1710.02409, arXiv:1710.08080]. Finally, we extend the definition of the optimized $f$-divergence, its data-processing inequality, and all of our recoverability results to the general von Neumann algebraic setting, so that all of our results can be employed in physical settings beyond those confined to the most common finite-dimensional setting of interest in quantum information theory.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.