Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Segmentation-Driven Feature-Preserving Mesh Denoising (2008.01358v3)

Published 4 Aug 2020 in cs.GR

Abstract: Feature-preserving mesh denoising has received noticeable attention in visual media, with the aim of recovering high-fidelity, clean mesh shapes from the ones that are contaminated by noise. Existing denoising methods often design smaller weights for anisotropic surfaces and larger weights for isotropic surfaces in order to preserve sharp features, such as edges or corners, on the mesh shapes. However, they often disregard the fact that such small weights on anisotropic surfaces still pose negative impacts on the denoising outcomes and detail preservation results on the shapes. In this paper, we propose a novel segmentation-driven mesh denoising method which performs region-wise denoising, and thus avoids the disturbance of anisotropic neighbour faces for better feature preservation results. Also, our backbone can be easily embedded into commonly-used mesh denoising frameworks. Extensive experiments have demonstrated that our method can enhance the denoising results on a wide range of synthetic and real mesh models, both quantitatively and visually.

Summary

We haven't generated a summary for this paper yet.