Papers
Topics
Authors
Recent
Search
2000 character limit reached

On Solving a Class of Fractional Semi-infinite Polynomial Programming Problems

Published 4 Aug 2020 in math.OC | (2008.01256v3)

Abstract: In this paper, we study a class of fractional semi-infinite polynomial programming (FSIPP) problems, in which the objective is a fraction of a convex polynomial and a concave polynomial, and the constraints consist of infinitely many convex polynomial inequalities. To solve such a problem, we first reformulate it to a pair of primal and dual conic optimization problems, which reduce to semidefinite programming (SDP) problems if we can bring sum-of-squares structures into the conic constraints. To this end, we provide a characteristic cone constraint qualification for convex semi-infinite programming problems to guarantee strong duality and also the attainment of the solution in the dual problem, which is of its own interest. In this framework, we first present a hierarchy of SDP relaxations with asymptotic convergence for the FSIPP problem whose index set is defined by finitely many polynomial inequalities. Next, we study four cases of the FSIPP problems which can be reduced to either a single SDP problem or a finite sequence of SDP problems, where at least one minimizer can be extracted. Then, we apply this approach to the four corresponding multi-objective cases to find efficient solutions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.