Papers
Topics
Authors
Recent
2000 character limit reached

Pricing Options Under Rough Volatility with Backward SPDEs

Published 3 Aug 2020 in q-fin.MF | (2008.01241v1)

Abstract: In this paper, we study the option pricing problems for rough volatility models. As the framework is non-Markovian, the value function for a European option is not deterministic; rather, it is random and satisfies a backward stochastic partial differential equation (BSPDE). The existence and uniqueness of weak solution is proved for general nonlinear BSPDEs with unbounded random leading coefficients whose connections with certain forward-backward stochastic differential equations are derived as well. These BSPDEs are then used to approximate American option prices. A deep leaning-based method is also investigated for the numerical approximations to such BSPDEs and associated non-Markovian pricing problems. Finally, the examples of rough Bergomi type are numerically computed for both European and American options.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.