Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalisable Cardiac Structure Segmentation via Attentional and Stacked Image Adaptation (2008.01216v2)

Published 3 Aug 2020 in eess.IV and cs.CV

Abstract: Tackling domain shifts in multi-centre and multi-vendor data sets remains challenging for cardiac image segmentation. In this paper, we propose a generalisable segmentation framework for cardiac image segmentation in which multi-centre, multi-vendor, multi-disease datasets are involved. A generative adversarial networks with an attention loss was proposed to translate the images from existing source domains to a target domain, thus to generate good-quality synthetic cardiac structure and enlarge the training set. A stack of data augmentation techniques was further used to simulate real-world transformation to boost the segmentation performance for unseen domains.We achieved an average Dice score of 90.3% for the left ventricle, 85.9% for the myocardium, and 86.5% for the right ventricle on the hidden validation set across four vendors. We show that the domain shifts in heterogeneous cardiac imaging datasets can be drastically reduced by two aspects: 1) good-quality synthetic data by learning the underlying target domain distribution, and 2) stacked classical image processing techniques for data augmentation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hongwei Li (97 papers)
  2. Jianguo Zhang (97 papers)
  3. Bjoern Menze (117 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.