Papers
Topics
Authors
Recent
2000 character limit reached

Multiplier tests and subhomogeneity of multiplier algebras

Published 3 Aug 2020 in math.FA, math.CV, and math.OA | (2008.00981v2)

Abstract: Multipliers of reproducing kernel Hilbert spaces can be characterized in terms of positivity of $n \times n$ matrices analogous to the classical Pick matrix. We study for which reproducing kernel Hilbert spaces it suffices to consider matrices of bounded size $n$. We connect this problem to the notion of subhomogeneity of non-selfadjoint operator algebras. Our main results show that multiplier algebras of many Hilbert spaces of analytic functions, such as the Dirichlet space and the Drury-Arveson space, are not subhomogeneous, and hence one has to test Pick matrices of arbitrarily large matrix size $n$. To treat the Drury-Arveson space, we show that multiplier algebras of certain weighted Dirichlet spaces on the disc embed completely isometrically into the multiplier algebra of the Drury-Arveson space.

Citations (25)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.