Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Network Ensemble Learning applied to Image Classification using CNN Trees (2008.00829v1)

Published 23 Jul 2020 in cs.CV, cs.LG, and cs.NE

Abstract: Traditional machine learning approaches may fail to perform satisfactorily when dealing with complex data. In this context, the importance of data mining evolves w.r.t. building an efficient knowledge discovery and mining framework. Ensemble learning is aimed at integration of fusion, modeling and mining of data into a unified model. However, traditional ensemble learning methods are complex and have optimization or tuning problems. In this paper, we propose a simple, sequential, efficient, ensemble learning approach using multiple deep networks. The deep network used in the ensembles is ResNet50. The model draws inspiration from binary decision/classification trees. The proposed approach is compared against the baseline viz. the single classifier approach i.e. using a single multiclass ResNet50 on the ImageNet and Natural Images datasets. Our approach outperforms the baseline on all experiments on the ImageNet dataset. Code is available in https://github.com/mueedhafiz1982/CNNTreeEnsemble.git

Citations (7)

Summary

We haven't generated a summary for this paper yet.