Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-evolving ghost imaging (2008.00648v1)

Published 3 Aug 2020 in eess.IV, physics.app-ph, and physics.optics

Abstract: Ghost imaging can capture 2D images with a point detector instead of an array sensor. It therefore offers a solution to the challenge of building area format sensors in wavebands where such sensors are difficult and expensive to produce and opens up new imaging modalities due to high-performance single-pixel detectors. Traditionally, ghost imaging retrieves the image of an object offline, by correlating measured light intensities and applied illuminating patterns. Here we present a feedback-based approach for online updating of the imaging result that can bypass post-processing, termed self-evolving ghost imaging (SEGI). We introduce a genetic algorithm to optimize the illumination patterns in real-time to match the objects shape according to the measured total light intensity. We theoretically and experimentally demonstrate this concept for static and dynamic imaging. This method opens new perspectives for real-time ghost imaging in applications such as remote sensing (e.g. machine vision, LiDAR systems in autonomous vehicles) and biological imaging.

Citations (11)

Summary

We haven't generated a summary for this paper yet.