Papers
Topics
Authors
Recent
2000 character limit reached

Minimum $2$-vertex strongly biconnected spanning directed subgraph problem

Published 2 Aug 2020 in cs.DS | (2008.00496v1)

Abstract: A directed graph $G=(V,E)$ is strongly biconnected if $G$ is strongly connected and its underlying graph is biconnected. A strongly biconnected directed graph $G=(V,E)$ is called $2$-vertex-strongly biconnected if $|V|\geq 3$ and the induced subgraph on $V\setminus\left\lbrace w\right\rbrace $ is strongly biconnected for every vertex $w\in V$. In this paper we study the following problem. Given a $2$-vertex-strongly biconnected directed graph $G=(V,E)$, compute an edge subset $E{2sb} \subseteq E$ of minimum size such that the subgraph $(V,E{2sb})$ is $2$-vertex-strongly biconnected.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.