Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Beurling-type theorem in the Bergman space $A^2_α(D)$ for any $-1<α<+\infty$ (2008.00434v3)

Published 2 Aug 2020 in math.FA

Abstract: In this paper, we use a new method to solve a long-standing problem. More specifically, we show that the Beurling-type theorem holds in the Bergman space $A2_\alpha(D)$ for any $-1<\alpha < +\infty$. That is, every invariant subspace $H$ for the shift operator $S$ on $A2_\alpha(D)$ $(-1<\alpha < +\infty)$ has the property $H=[H\ominus zH]{S,A2\alpha\left(D\right)}$.

Summary

We haven't generated a summary for this paper yet.