Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Pyramid Recurrent Network for Predicting Crowdsourced Speech-Quality Ratings of Real-World Signals (2007.15797v1)

Published 31 Jul 2020 in eess.AS, cs.CL, cs.LG, cs.MM, and cs.SD

Abstract: The real-world capabilities of objective speech quality measures are limited since current measures (1) are developed from simulated data that does not adequately model real environments; or they (2) predict objective scores that are not always strongly correlated with subjective ratings. Additionally, a large dataset of real-world signals with listener quality ratings does not currently exist, which would help facilitate real-world assessment. In this paper, we collect and predict the perceptual quality of real-world speech signals that are evaluated by human listeners. We first collect a large quality rating dataset by conducting crowdsourced listening studies on two real-world corpora. We further develop a novel approach that predicts human quality ratings using a pyramid bidirectional long short term memory (pBLSTM) network with an attention mechanism. The results show that the proposed model achieves statistically lower estimation errors than prior assessment approaches, where the predicted scores strongly correlate with human judgments.

Citations (19)

Summary

We haven't generated a summary for this paper yet.