Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cauchy Problem for a Linear System of Ordinary Differential Equations of the Fractional Order (2007.15631v1)

Published 30 Jul 2020 in math.AP and math.CA

Abstract: The paper investigates the initial problem for a linear system of ordinary differential equations with the fractional differentiation operator Dzhrbashyan -- Nersesyan with constant coefficients. The existence and uniqueness theorems of the solution of the boundary value problem under study are proved. The solution is constructed explicitly in terms of the Mittag-Leffler function of the matrix argument. The Dzhrbashyan -- Nersesyan operator is a generalization of the Riemann -- Liouville, Caputo and Miller-Ross fractional differentiation operators. The obtained results as special cases contain results related to the study of initial problems for systems of ordinary differential equations with Riemann -- Liouville, Caputo and Miller -- Ross derivativess, and the investigated initial problem generalizes them

Summary

We haven't generated a summary for this paper yet.