Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A PAC algorithm in relative precision for bandit problem with costly sampling (2007.15331v2)

Published 30 Jul 2020 in math.OC, cs.LG, and stat.ML

Abstract: This paper considers the problem of maximizing an expectation function over a finite set, or finite-arm bandit problem. We first propose a naive stochastic bandit algorithm for obtaining a probably approximately correct (PAC) solution to this discrete optimization problem in relative precision, that is a solution which solves the optimization problem up to a relative error smaller than a prescribed tolerance, with high probability. We also propose an adaptive stochastic bandit algorithm which provides a PAC-solution with the same guarantees. The adaptive algorithm outperforms the mean complexity of the naive algorithm in terms of number of generated samples and is particularly well suited for applications with high sampling cost.

Citations (1)

Summary

We haven't generated a summary for this paper yet.