Papers
Topics
Authors
Recent
Search
2000 character limit reached

On Representing (Anti)Symmetric Functions

Published 30 Jul 2020 in cs.NE and quant-ph | (2007.15298v1)

Abstract: Permutation-invariant, -equivariant, and -covariant functions and anti-symmetric functions are important in quantum physics, computer vision, and other disciplines. Applications often require most or all of the following properties: (a) a large class of such functions can be approximated, e.g. all continuous function, (b) only the (anti)symmetric functions can be represented, (c) a fast algorithm for computing the approximation, (d) the representation itself is continuous or differentiable, (e) the architecture is suitable for learning the function from data. (Anti)symmetric neural networks have recently been developed and applied with great success. A few theoretical approximation results have been proven, but many questions are still open, especially for particles in more than one dimension and the anti-symmetric case, which this work focusses on. More concretely, we derive natural polynomial approximations in the symmetric case, and approximations based on a single generalized Slater determinant in the anti-symmetric case. Unlike some previous super-exponential and discontinuous approximations, these seem a more promising basis for future tighter bounds. We provide a complete and explicit universality proof of the Equivariant MultiLayer Perceptron, which implies universality of symmetric MLPs and the FermiNet.

Citations (21)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.