Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Out-of-distribution Generalization via Partial Feature Decorrelation (2007.15241v4)

Published 30 Jul 2020 in cs.LG and stat.ML

Abstract: Most deep-learning-based image classification methods assume that all samples are generated under an independent and identically distributed (IID) setting. However, out-of-distribution (OOD) generalization is more common in practice, which means an agnostic context distribution shift between training and testing environments. To address this problem, we present a novel Partial Feature Decorrelation Learning (PFDL) algorithm, which jointly optimizes a feature decomposition network and the target image classification model. The feature decomposition network decomposes feature embeddings into the independent and the correlated parts such that the correlations between features will be highlighted. Then, the correlated features help learn a stable feature representation by decorrelating the highlighted correlations while optimizing the image classification model. We verify the correlation modeling ability of the feature decomposition network on a synthetic dataset. The experiments on real-world datasets demonstrate that our method can improve the backbone model's accuracy on OOD image classification datasets.

Summary

We haven't generated a summary for this paper yet.